
All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 11

CMSC 426

Principles of Computer Security

Lecture 06

Overflow Defenses and Variations



All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 2

Last Class We Covered

 How the shellcode works

 In excruciating detail

 Stack buffer overflow exploit demo

 Partial

 Setup, failures



All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 3

Any Questions from Last Time?



All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 4

Today’s Topics

 Defenses against stack overflow attacks

 ASLR

 Stack canaries

 Preventing stack execution

 Buffer overflow variations

 return-to-libc

 Return-oriented programming



All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 5

Stack Overflow Defenses



All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 6

ASLR

 Address Space Layout Randomization

 Stack memory region is moved around between executions

 Shellcode must contain an absolute address to jump to

 We’ve made use of gdb to get that information out of the executable

 How much does it need to be moved around by?

 Minimum: enough to prevent vulnerable buffers from having overlap

 Workarounds?

 Brute forcing, partial EIP overwrites, direct RET overwrite

 Outside of the scope of this class



All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 7

Stack Canaries (Stackguard)

 Named after coal mine canaries

 Write a “canary” value to the stack before 

allocating space for local variables

 Function checks canary value has not changed before exiting

 How is canary value chosen?

 Must be random/unpredictable… why?

 Otherwise attacker could simply write a static value in their overflow



All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 8

Prevent Stack Execution

 Blocks the execution of code located in the stack

 What would this affect?

 Shellcode can be written to the stack, but will not be executed

 There are certain programs that require placing executable 

code on the stack (JIT compilation)

 Special provisions must be made for these to work

 Called DEP (Data Execution Prevention) on Windows



All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 9

Buffer Overflow Variations



All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 10

return-to-libc

 Refers to the C standard library (libc)

 Instead of jumping to shellcode on the stack, 

jump to useful library functions

 system()

 Calls host environment’s command processor with specified 
command (for example, /bin/sh)

 No longer requires executable stack



All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 11

Return-Oriented Programming (ROP)

 Video (with transcript):

 https://www.rapid7.com/resources/rop-exploit-explained/

 When the stack is no longer executable, jump to other parts of 

the program that are executable to have those pieces run

 Piece (“gadget”) must end with a return, so it’ll jump back

 Chaining enough gadgets together with allow tasks to be performed

 More complicated than just writing the shell code, 

but still very doable, and difficult to protect against



All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 12

Daily Security Tidbit

 Shipping companies were hit in 

August 2018 by ransomware tied 

to a popular accounting software

 Maersk, in Ukraine, is responsible 

for about 15% of the world’s 

shipping network

 Country’s network was down for days

 Resorted to using WhatsApp on private 

phones to conduct business

Information taken from https://www.theregister.co.uk/2017/08/16/notpetya_ransomware_attack_cost_us_300m_says_shipping_giant_maersk/

Image from  https://twitter.com/wimremes/status/1041039369484861440



All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 13

Image Sources

 Canary:

 http://pngimg.com/download/20108


