
All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 11

CMSC 426

Principles of Computer Security

Lecture 06

Overflow Defenses and Variations

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 2

Last Class We Covered

 How the shellcode works

 In excruciating detail

 Stack buffer overflow exploit demo

 Partial

 Setup, failures

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 3

Any Questions from Last Time?

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 4

Today’s Topics

 Defenses against stack overflow attacks

 ASLR

 Stack canaries

 Preventing stack execution

 Buffer overflow variations

 return-to-libc

 Return-oriented programming

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 5

Stack Overflow Defenses

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 6

ASLR

 Address Space Layout Randomization

 Stack memory region is moved around between executions

 Shellcode must contain an absolute address to jump to

 We’ve made use of gdb to get that information out of the executable

 How much does it need to be moved around by?

 Minimum: enough to prevent vulnerable buffers from having overlap

 Workarounds?

 Brute forcing, partial EIP overwrites, direct RET overwrite

 Outside of the scope of this class

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 7

Stack Canaries (Stackguard)

 Named after coal mine canaries

 Write a “canary” value to the stack before

allocating space for local variables

 Function checks canary value has not changed before exiting

 How is canary value chosen?

 Must be random/unpredictable… why?

 Otherwise attacker could simply write a static value in their overflow

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 8

Prevent Stack Execution

 Blocks the execution of code located in the stack

 What would this affect?

 Shellcode can be written to the stack, but will not be executed

 There are certain programs that require placing executable

code on the stack (JIT compilation)

 Special provisions must be made for these to work

 Called DEP (Data Execution Prevention) on Windows

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 9

Buffer Overflow Variations

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 10

return-to-libc

 Refers to the C standard library (libc)

 Instead of jumping to shellcode on the stack,

jump to useful library functions

 system()

 Calls host environment’s command processor with specified
command (for example, /bin/sh)

 No longer requires executable stack

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 11

Return-Oriented Programming (ROP)

 Video (with transcript):

 https://www.rapid7.com/resources/rop-exploit-explained/

 When the stack is no longer executable, jump to other parts of

the program that are executable to have those pieces run

 Piece (“gadget”) must end with a return, so it’ll jump back

 Chaining enough gadgets together with allow tasks to be performed

 More complicated than just writing the shell code,

but still very doable, and difficult to protect against

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 12

Daily Security Tidbit

 Shipping companies were hit in

August 2018 by ransomware tied

to a popular accounting software

 Maersk, in Ukraine, is responsible

for about 15% of the world’s

shipping network

 Country’s network was down for days

 Resorted to using WhatsApp on private

phones to conduct business

Information taken from https://www.theregister.co.uk/2017/08/16/notpetya_ransomware_attack_cost_us_300m_says_shipping_giant_maersk/

Image from https://twitter.com/wimremes/status/1041039369484861440

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 13

Image Sources

 Canary:

 http://pngimg.com/download/20108

