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CMSC 426

Principles of Computer Security

Lecture 06

Overflow Defenses and Variations
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Last Class We Covered

 How the shellcode works

 In excruciating detail

 Stack buffer overflow exploit demo

 Partial

 Setup, failures
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Any Questions from Last Time?
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Today’s Topics

 Defenses against stack overflow attacks

 ASLR

 Stack canaries

 Preventing stack execution

 Buffer overflow variations

 return-to-libc

 Return-oriented programming
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Stack Overflow Defenses
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ASLR

 Address Space Layout Randomization

 Stack memory region is moved around between executions

 Shellcode must contain an absolute address to jump to

 We’ve made use of gdb to get that information out of the executable

 How much does it need to be moved around by?

 Minimum: enough to prevent vulnerable buffers from having overlap

 Workarounds?

 Brute forcing, partial EIP overwrites, direct RET overwrite

 Outside of the scope of this class
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Stack Canaries (Stackguard)

 Named after coal mine canaries

 Write a “canary” value to the stack before 

allocating space for local variables

 Function checks canary value has not changed before exiting

 How is canary value chosen?

 Must be random/unpredictable… why?

 Otherwise attacker could simply write a static value in their overflow
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Prevent Stack Execution

 Blocks the execution of code located in the stack

 What would this affect?

 Shellcode can be written to the stack, but will not be executed

 There are certain programs that require placing executable 

code on the stack (JIT compilation)

 Special provisions must be made for these to work

 Called DEP (Data Execution Prevention) on Windows
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Buffer Overflow Variations
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return-to-libc

 Refers to the C standard library (libc)

 Instead of jumping to shellcode on the stack, 

jump to useful library functions

 system()

 Calls host environment’s command processor with specified 
command (for example, /bin/sh)

 No longer requires executable stack
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Return-Oriented Programming (ROP)

 Video (with transcript):

 https://www.rapid7.com/resources/rop-exploit-explained/

 When the stack is no longer executable, jump to other parts of 

the program that are executable to have those pieces run

 Piece (“gadget”) must end with a return, so it’ll jump back

 Chaining enough gadgets together with allow tasks to be performed

 More complicated than just writing the shell code, 

but still very doable, and difficult to protect against
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Daily Security Tidbit

 Shipping companies were hit in 

August 2018 by ransomware tied 

to a popular accounting software

 Maersk, in Ukraine, is responsible 

for about 15% of the world’s 

shipping network

 Country’s network was down for days

 Resorted to using WhatsApp on private 

phones to conduct business

Information taken from https://www.theregister.co.uk/2017/08/16/notpetya_ransomware_attack_cost_us_300m_says_shipping_giant_maersk/

Image from  https://twitter.com/wimremes/status/1041039369484861440
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Image Sources

 Canary:

 http://pngimg.com/download/20108


